A DG GUIDE TO VOEVODSKY’S MOTIVES A. Beilinson and V. Vologodsky

نویسنده

  • Joseph Bernstein
چکیده

Let Var be the category of complex algebraic varieties, Top that of nice topological spaces, Dab be the derived category of finite complexes of finitely generated abelian groups. One has tensor functors Var → Top → Dab, the first assigns to a variety its space equipped with the classical topology, the second one is the singular chain complex functor (the tensor structure for the first two categories is given by the direct product). The basic objective of the motive theory is to fill in a commutative square

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dg Guide to Voevodsky’s Motives

Let Var be the category of complex algebraic varieties, Top that of nice topological spaces, Dab be the derived category of finite complexes of finitely generated abelian groups. One has tensor functors Var → Top → Dab, the first assigns to a variety its space equipped with the classical topology, the second one is the singular chain complex functor (the tensor structure for the first two categ...

متن کامل

Tensor Structure on Smooth Motives

Grothendieck first defined the notion of a “motif” as a way of finding a universal cohomology theory for algebraic varieties. Although this program has not been realized, Voevodsky has constructed a triangulated category of geometric motives over a perfect field, which has many of the properties expected of the derived category of the conjectural abelian category of motives. The construction of...

متن کامل

Biextensions of 1-motives in Voevodsky’s Category of Motives

Let k be a perfect field. In this paper we prove that biextensions of 1-motives define multilinear morphisms between 1-motives in Voevodsky’s triangulated category DM gm(k, Q) of effective geometrical motives over k with rational coefficients.

متن کامل

Voevodsky’s Motives and Weil Reciprocity

We describe Somekawa’s K-group associated to a finite collection of semi-abelian varieties (or more general sheaves) in terms of the tensor product in Voevodsky’s category of motives. While Somekawa’s definition is based on Weil reciprocity, Voevodsky’s category is based on homotopy invariance. We apply this to explicit descriptions of certain algebraic cycles.

متن کامل

On the Regulator of Fermat Motives and Generalized Hypergeometric Functions

We calculate the Beilinson regulators of motives associated to Fermat curves and express them by special values of generalized hypergeometric functions. As a result, we obtain surjectivity results of the regulator, which support the Beilinson conjecture on special values of L-functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007